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Abstract. We study the phase transition of a star-shaped superconductor, which covers smoothly the

range from zero to two dimensions with respect to the superconducting coherence length ξ(T ). Detailed

measurements and numerical calculations show that the nucleation of superconductivity in this device

is very inhomogeneous: the superconducting order parameter is strongly enhanced and mostly robust in

regions close to multiple boundaries. The strong inhomogeneity of the order parameter results in a rich

structure of the superconducting transition as a function of temperature and magnetic field.

PACS. 74.78.-w Superconducting films and low-dimensional structures – 74.78.Na Mesoscopic and

nanoscale systems – 74.20.De Phenomenological theories

Many characteristics of a superconducting sample are
strongly influenced by its size with respect to fundamental
superconducting length scales. Experimental and theoret-
ical investigations over the past few decades have clearly
delineated the differences in behavior between one-dimen-
sional, two-dimensional and “bulk” (three-dimensional)
samples as concerns such properties as the critical field,
critical temperature and critical current. Recently [1],
there has been renewed interest in the effect of sample
dimension on the properties of superconductors, fueled in
part by their potential use in future nanometer scale de-
vices. The complex geometry of such devices implies that
one needs to consider the nucleation of superconductivity
over a range of length scales in a single device.

The nucleation of superconductivity in the presence
of a magnetic field can be investigated by solving the
Ginzburg-Landau(GL) equations for the superconducting
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order parameter ψ and the vector potential A of the mag-
netic field B = ∇× A [2–4]:
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Here α and β is the GL parameters, and n is the unit
vector normal to the surface.

Close to the critical temperature Tc, |ψ|2 is negligible,
and one can analytically solve the linearized GL equa-
tion (1) for some simple geometries. Saint-James and de
Gennes [5] solved this linear equation for the case of a
magnetic field parallel to the surface of a superconduc-
tor. They found that superconductivity could exist at a
field Hc3 (the so-called surface critical field) larger than
the upper critical field Hc2 in the bulk superconductor,
Hc3 = 1.69Hc2. More recently [6], attention has focused on
superconducting wedges subtending an angle γ, with the
magnetic field applied parallel to the wedge’s edge. In the
limit of small γ, it has been predicted [7,8] that the surface
critical field can be greatly enhanced, Hc3 = (1.73/γ)Hc2,
although this has never been demonstrated experimen-
tally. This large enhancement of Hc3 can be ultimately
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Fig. 1. (a) Schematic representation of the method that was

used to design samples. (b) Scanning electron micrograph of

one of the samples. The inset shows magnified area of the apex.

traced to the increase in the “energy” (−α) in the GL
equation (1) associated with the confinement of the order
parameter.

For more complicated geometries, and for regimes fur-
ther away from the superconducting transition, it is nec-
essary to solve the full GL equations numerically. This has
been done for many different geometries, including rings
[9,10], square loops [11,12] bridges [13] and triangles [14].
Here we are interested in a four-pointed “star” geometry,
shown schematically in Figure 1. The remarkable feature
of this geometry is that it encompasses a wide range of
length scales. As we shall see, this results in appearance
of regions of the sample with characteristically different
behavior in the superconducting regime.

The experimental sample is prepared by removing por-
tions of a circle of radius a from the corners of a square of
side 2a, as shown in Figure 1a. The experimental realiza-
tion of this geometry is shown in Figure 1b. The sample
is fabricated by conventional electron beam lithography
with a 60 nm thick Al film. The apex-to-apex distance is
12 µm, the minimum dimension at each apex is less than
100 nm. These dimensions are also used in all numeri-
cal calculations. In order to enable four-terminal electrical
measurements on the device, narrow electrical contacts of
the same material are attached to opposite apices.

To obtain the solutions of the GL equations (1), (2)
with the boundary conditions (3), we use the finite-diffe-
rence method applied earlier for the description of super-
conductivity in a mesoscopic square loop [11,12], using the
dimensions and parameters of the experimental sample of
Figure 1. One additional complication of this geometry
for the finite-difference method is the infinite sharpness of
the apices of the “star”, which makes the generation of a
mesh for the problem difficult. Fortunately, the vertices of
the experimental sample have finite curvature, which re-
sults in a definite cut-off length of around 100 nm for the
tip of each apex, as shown in the inset to Figure 1. In our
calculations of the order parameter and magnetic field dis-
tributions, a square mesh has been used with the density
of 800 nodes per side of the sample. At such a high density
of nodes, the results of calculations are independent of the
mesh.

The solutions of the GL equations with appropriate
boundary conditions permit us to obtain the spatial dis-
tribution of the order parameter and the magnetic field

Fig. 2. Evolution of |ψ(x, y)|2 and magnetic field distribution

in the “star” with temperature for an applied external field

of H0 = 0.02Hc(0) = 2 G, where Hc(0) = 100 G is the bulk

critical field at zero temperature, at different temperatures: a -

T/Tc = 0.99, b - 0.98, c - 0.97, d - 0.94. |ψ(x, y)|2 is normalized

to its maximum value at these temperatures.

as a function of temperature T , as shown in Figure 2. As
temperature is decreased slightly from Tc (T/Tc = 0.99),
one observes nucleation of superconductivity as evidenced
by a non-zero |ψ(x, y)|2 in two distinct regions of the sam-
ple. The first region is a large area in the center, where
one might intuitively expect superconductivity to nucle-
ate. The second region is at the apices of the “star”, where
superconductivity is enhanced by the close proximity of
two boundaries, and resembles the situation that occurs
in a superconducting “wedge.” In between these two re-
gions, |ψ|2 is essentially 0, so that the superconducting
phases of the sample are separated by regions of normal
phase. The plot of the field distribution shows that the two
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Fig. 3. Experimentally measured resistive transition, taken

at different magnetic fields. The inset shows the numerically

calculated R(T ). Tc = 1.32 K, and RN = 12 Ω. The “kinks”

(denoted by the arrows) define a crossover between different

types of the |ψ(x, y)|2-distributions. At low resistances close to

R = 0, this is the transition from the |ψ(x, y)|2-pattern of the

type represented in Figure 2d to that one displayed in Figure

2c. The second “kink”, observed at higher resistances, is related

to the transition between the |ψ(x, y)|2-patterns of the types

plotted in Figures 2b and 2a.

superconducting regions are characterized by different be-
havior in a magnetic field: the central region shows the be-
ginning of Meissner expulsion of the external field, while
the magnetic field near the boundaries is very close to the
external field value. As the temperature is lowered fur-
ther, the superconducting areas in the two regions grow
as expected to cover almost the entire sample, and the
normal regions between the apices and the center disap-
pear. At the lowest temperature shown, the value of |ψ|2
at the apices and in the central region achieves its max-
imum corresponding to this temperature, |ψ(x, y)|2max ∼
(1 − T/Tc) = 0.06. The magnetic field at the center is
greatly reduced, showing the presence of a strong Meiss-
ner effect, but the magnetic field in a narrow region at the
boundaries of the sample is still very close to the exter-
nal field value. It should be noted that the value of |ψ|2
at the apices is a maximum, even though the magnetic
field is also a maximum. In fact, the value of |ψ|2 at the
apices does not change appreciably over the temperature
range shown in Figure 2, demonstrating vividly the fact
that superconductivity is the most robust in regions close
to multiple boundaries.

The electrical contacts in the sample are placed at
opposite apices, so that the electrical current must tra-
verse these apices, the central region, as well as any
normal regions in between. Consequently, the inhomoge-
neous nature of superconductivity nucleation as the sam-
ple is cooled through its transition imparts a distinctive
shape to R(T ), as shown in Figure 3. The normal-to-
superconducting transition starts with a decrease in re-

sistance over a relatively broad range in temperature even
at H0 = 0. In this temperature range, superconductiv-
ity begins to nucleate at the apices and at the central
part, as was shown in Figure 2, but the regions near the
apices, being narrower, contribute a large fraction to the
resistance change. As the temperature is reduced further,
there is a much sharper drop in the resistance when R is
a little less than half the normal state resistance RN (at
H0 = 0). Since the central region and the apices are al-
ready superconducting, this rapid change corresponds to
the normal-to-superconducting transition of the “necks”
between the apices and the central region. Calculations of
the superconducting transition confirm this picture.

Numerically, we calculate the resistance of the sample
using the order parameter distribution. As the order pa-
rameter and magnetic field distributions, the resistance of
the sample is calculated on a rectangular mesh. The re-
sistance of a mesh cell in the sample is determined by the
value of |ψ(x, y)|2 in the cell, being zero if |ψ(x, y)|2 > 0,
and equal to the normal state resistance if |ψ(x, y)|2 = 0.
One must also take into account the Josephson coupling
between the superconducting regions, which reduces the
resistance of the “necks”. We suppose that a region of
the normal metal of length ≤ pξ (where p ≈ 2 is an
adjustable parameter) between superconducting “islands”
does not contribute to the resistance in the circuit. The
inset of Figure 3 shows the results of this calculation for
two different field values. The theoretical curves repro-
duce the main qualitative features of the experimental
curves, including the “kinks” at low resistances, and are
in reasonably good quantitative agreement as well. The
appearance of “kinks” in the resistive transition can be
interpreted in terms of the inhomogeneous depression of
the order parameter in the “star” with rising tempera-
ture. The “kinks” at low resistances, which correspond to
a crossover from the |ψ(x, y)|2-pattern of the type repre-
sented in Figure 2d to that one shown in Figure 2c, can
be attributed to the occurrence of areas with strongly de-
pressed order parameter between the central region and
the apices. The second (less pronounced) “kink” at a
higher resistance, which corresponds to a transition be-
tween the |ψ(x, y)|2-patterns of the types plotted in Fig-
sures 2b and 2a, can be related to the ultimate separation
of the central superconducting region from the surface su-
perconducting sheath connected to the superconducting
regions near the apices. The calculated position of the be-
ginning of the resistive transition compares rather well
with the experimental curves when the tunneling of the
superconducting electrons through the normal metal is
taken into consideration.

The behavior of the sample in a magnetic field (Fig. 4)
exhibits even more distinctly the difference between the
nature of the superconductivity in the center and in the
apices. While |ψ(x, y)|2 in the central region is rapidly at-
tenuated with increasing magnetic field, its value in the
apices does not show a large change. At large magnetic
fields, only the apices are superconducting. This would im-
ply that the contribution to the resistance of the sample
from the apices is not strongly affected by magnetic field.
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Fig. 4. Evolution of |ψ(x, y)|2 with magnetic field at T/Tc = 0.96; |ψ(x, y)|2 is normalized to its maximum value at this

temperature.

Evidence for this can be seen directly in the experimental
transition curves. The resistance of the sample at the top
of the transition, where the decrease in resistance is pri-
marily due to the nucleation of superconductivity in the
apices, shows only a weak dependence on magnetic field.
At lower values of resistance, where one has contributions
from the central region as well as the “necks”, the field de-
pendence is much stronger, reflecting the two-dimensional
nature of the superconductivity in these regions.

Fig. 5. T −H phase diagrams measured at R/RN = 0.58 (a),

0.42 (b), 0.33 (c), 0.25 (d), 0.21 (e), 0.17 (f), 0.125 (g), 0.08 (h).

Inset shows the Little-Parks [15] oscillations at smaller field for

R/RN = 0.04.

Even more striking is the magnetic phase diagram (Tc

vs. H) of the sample. Typically, this is obtained by vary-
ing the temperature to maintain the resistance of the sam-
ple at the midpoint of the transition (R/RN = 0.5) while
changing the magnetic field. Since our sample is inhomoge-
neous, and it is not clear how one would define the unique
Tc, we have measured the phase diagram with the sam-
ple biased at various points R/RN of the superconduct-
ing transition. Figure 5 shows the result of these mea-
surements. Although the curves are different, each one

shows two distinct regions, separated by a well-defined
“kink” denoted by the arrow. At low fields, the curves
show a quasi-linear dependence on H0, which turns into a
quadratic dependence at higher magnetic fields. It is well
known that the critical temperature of a superconductor
varies linearly with the magnetic field in two dimensions,
and quadratically in one dimension [4]. The “kink” in each
curve defines the crossover from two-dimensional behavior
at low fields to one-dimensional behavior at higher fields.
This behavior is in agreement with the evolution of the
superconducting regions of the sample shown in the nu-
merical simulations of Figure 2. At low fields, the central
region and the “necks” of the sample are superconducting,
giving a two-dimensional characteristic to the phase dia-
gram. At higher fields, superconductivity in these regions
is attenuated, leaving a finite order parameter only in the
apices, which gives rise to a quadratic dependence on the
magnetic field. It is interesting to note that the low-field
linear behavior of all the curves extrapolates to a single
temperature at H0 = 0, while the high-field quadratic
behavior of all the curves also extrapolates to a single
(but different) temperature. The different temperatures
clearly point out the inhomogeneous nature of the super-
conducting transition in this device. Well pronounced Tc

oscillations on the magnetic phase diagram, which have
been measured at the lowest resistance set point, shown
in the inset to Figure 5, imply the presence of the mag-
netic vortices in our sample. This fact may determine the
low temperature resistive “kink”, indicated in Figure 3.
However, the formation and dynamics of vortices require
a separate detailed study, which was beyond the goals of
the present paper.

In conclusion, we have analyzed the resistive transi-
tion in a star-shaped sample, which combines properties
of two-dimensional and zero-dimensional superconductors
in a unique manner. Occurrence of qualitatively different
regions in the resistive transition reflects a smooth change
from 2D to 0D superconducting regime when increasing
applied magnetic field or temperature.
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